Some mixed finite element methods for biharmonic equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation

In this paper, we first split the biharmonic equation !2u = f with nonhomogeneous essential boundary conditions into a system of two second order equations by introducing an auxiliary variable v = !u and then apply an hp-mixed discontinuous Galerkin method to the resulting system. The unknown approximation vh of v can easily be eliminated to reduce the discrete problem to a Schur complement sys...

متن کامل

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

Finite Element Methods for Biharmonic Problem

and Applied Analysis 3 Let EI and EB be the set of interior edges and boundary edges of Th, respectively. Let E EI ∪ EB. Denote by v the restriction of v to Ki. Let e eij ∈ EI with i > j. Then we denote the jump v and the average {v} of v on e by v |e v ∣ ∣ ∣ e −v ∣ ∣ ∣ e , {v}|e 1 2 ( v ∣ ∣ ∣ e v ∣ ∣ ∣ e ) . 2.4 If e ei ∈ EB, we denote v and {v} of v on e by v |e {v}|e v ∣ ∣ ∣ e . 2.5

متن کامل

Non-conforming Mixed Finite Element Methods for Diffusion Equation

In this dissertation, we consider new approaches to the construction of meshes, discretization, and preconditioning of the resulting algebraic systems for the diffusion equation with discontinuous coefficients. In the first part, we discuss mixed finite element approximations of the diffusion equation on general polyhedral meshes. We introduce a non-conforming approximation method for the flux ...

متن کامل

A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations

This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2000

ISSN: 0377-0427

DOI: 10.1016/s0377-0427(99)00342-8